4.8 Article

Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers

期刊

ANALYTICAL CHEMISTRY
卷 73, 期 20, 页码 4988-4993

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac010406+

关键词

-

资金

  1. NINDS NIH HHS [NS39891-01] Funding Source: Medline

向作者/读者索取更多资源

A new molecular conjugation method has been developed to label biomolecules with optically stable metalorganic luminophores, such as tris(2,2'-bipyridyl)dichlororuthenium(H) hexahydrate (Rubpy), which are otherwise not possible for direct linking with the biomolecules. Unique biochemical properties of the biomolecule can, thus, be associated with photostable luminophores. This opens a general way to conjugate desired biomolecules using a sensitive signal transduction method. It also promotes the application of excellent luminescent materials, especially those based on photostable metalorganic luminophores, in biochemical analysis and biomolecular interaction studies. The conjugation method is based on uniform luminophore-doped silica (LDS) nanoparticles (63 +/- 4 nm). These nanoparticles have been prepared using a water-in-oil (W/O) microemulsion method. The controlled hydrolysis of tetraethyl orthosilicate (TEOS) in W/O microemulsion leads to the formation of monodisperse LDS nanoparticles. The luminophores are doped inside the nanoparticles, and the particle's silica surfaces can be used to covalently bind with biomolecules. The luminophores are well-protected from the environmental oxygen when they are doped inside the silica network. As an example, we used an antibody for leukemia cell recognition. The antibody was first immobilized onto the luminophore-doped nanoparticle through silica chemistry and then was used for leukemia cell identification by an optical microscopy imaging technique. The leukemia cells were identified easily, clearly, and with high efficiency using these antibody-coated nanoparticles. The advantages of using small, uniform luminophore-doped nanoparticles are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据