4.8 Article

Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 35, 期 20, 页码 4054-4059

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es010597y

关键词

-

向作者/读者索取更多资源

High concentrations of H2O2 are being tested for in situ oxidation and remediation of buried organic contaminants in soils and groundwater. Peroxide is being considered as a direct chemical oxidant in Fenton-type reactions or as a source of oxidizing equivalents in bioremediation schemes. How H2O2 affects the oxidation state and solubility of Cr(III) and Cr(VI), common co-contaminants with organic chemicals, is explored here in four chemically diverse soils containing elevated levels of Cr. Soil contaminated with soluble Cr(VI) from chromite ore processing residue and soil containing high levels of recently reduced Cr (III) from electroplating waste both released dissolved Cr(VI) after single applications of up to 24 mM H2O2. In no case was there evidence that H2O2 reduced preexisting Cr(VI) to Cr(III), even though this would be allowed thermodynamically. Chromate in the leachates exceeded the U.S. EPA drinking water standard for total dissolved Cr (2 muM) by a factor of 10-1000. Anaerobic conditions in an organic-rich, tannery waste-contaminated soil protected Cr(Ill) from oxidation and mobilization. Mineral forms of Cr in serpentinitic soil near a former chromite mine also resisted oxidation on the time scale of days. Mobilization of Cr(VI) could be a hazardous consequence of using H2O2 for in situ remediation of chemically complex wastes, but H2O2 could prove attractive for ex situ treatment (i.e., soil washing). This paper demonstrates marked differences among Cr-contaminated soils in their capacity to release Cr(VI) upon chemical treatment with H2O2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据