4.6 Article

The smooth muscle myosin heavy chain gene exhibits smooth muscle subtype-selective modular regulation in vivo

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 42, 页码 39076-39087

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M105402200

关键词

-

资金

  1. NHLBI NIH HHS [R01HL28854, R01HL57353] Funding Source: Medline
  2. NICHD NIH HHS [U54HD28934] Funding Source: Medline

向作者/读者索取更多资源

Previous studies in our laboratory demonstrated that the transgene consisting of the -4.2 to +11.6 kilobase (kb) region of the smooth muscle (SM) myosin heavy chain (MHC) gene was expressed in virtually all SM tissue types in vivo in transgenic mice and that the multiple CArG elements within this region were differentially required in SMC subtypes, implying that the SM-MHC gene was controlled by multiple transcriptional regulatory modules. To investigate this hypothesis, we analyzed specific regulatory regions within the SM-MHC -4.2 to +11.6 kb region by a combination of deletion analyses of various SM-MHC transgenes as well as by DNaseI hypersensitivity assays and in vivo footprinting in intact SMC tissues. The results showed that SM-MHC transgene expression depended on a large number of required regulatory modules that were widely spread over the -4.2 to +11.6 region. Moreover, the results revealed several unexpected novel features of regulation of the SM-MHC gene including: 1) unique combinations of regulatory modules were required for SM-MHC expression in different SMC-subtypes; 2) repressor modules as well as activator modules were both critical for SMC specificity of the gene; 3) certain modules were required in certain contexts but were dispensable in others within a given SMC-subtype (i.e. the net activity of the module was determined by interaction between modules not simply by the sum of module activities); and 4) we identified a highly conserved 200-base pair transcriptional regulatory module at +8 kb that was required in the large arteries but dispensable in the coronary arteries and airways in transgenic mice and contained multiple potential cis-elements that were occupied by nuclear proteins in the intact aorta based on in vivo footprinting. Taken together, the results suggest a model of complex modular control of expression of the SM-MHC gene that varies between SMC subtypes. Moreover, the studies establish the possibility of designing derivatives of the SM-MHC promoter that might be used for targeting gene expression to specific SMC subtypes in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据