4.6 Article

Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 42, 页码 38949-38955

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106438200

关键词

-

向作者/读者索取更多资源

Neuroglobin is a recently discovered member of the globin superfamily that is suggested to enhance the O-2 supply of the vertebrate brain. Spectral measurements with human and mouse recombinant neuroglobin provide evidence for a hexacoordinated deoxy ferrous (Fe2+) form, indicating a His-Fe2+-His binding scheme. O-2 or CO can displace the endogenous protein ligand, which is identified as the distal histidine by mutagenesis. The ferric (Fe3+) form of neuroglobin is also hexacoordinated with the protein ligand E7-His and does not exhibit pH dependence. Flash photolysis studies show a high recombination rate (k(on)) and a slow dissociation rate (k(off)) for both O-2 and CO, indicating a high intrinsic affinity for these ligands. However, because the rate-limiting step in ligand combination with the deoxy hexacoordinated form involves the dissociation of the protein ligand, O-2 and CO binding is suggested to be slow in vivo. Because of this competition, the observed O-2 affinity of recombinant human neuroglobin is average (1 torr at 37 degrees C). Neuroglobin has a high autoxidation rate, resulting in an oxidation at 37 degrees C by air within a few minutes. The oxidation/reduction potential of mouse neuroglobin (E'(o) = -129 mV) lies within the physiological range. Under natural conditions, recombinant mouse neuroglobin occurs as a monomer with disulfide-dependent formation of dimers. The biochemical and kinetic characteristics are discussed in view of the possible functions of neuroglobin in the vertebrate brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据