4.4 Article

Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum

期刊

BIOCHEMISTRY
卷 40, 期 42, 页码 12524-12532

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi011391c

关键词

-

向作者/读者索取更多资源

Feruloyl esterases function in the cleavage of ferulic acid's bonds to arabinoxylan and pectin where the ferulic acid moieties cross-link the layers of polysaccharide chains within hemicellulose. This work presents the crystal structure of FAE_XynZ, the domain of Clostridium thermocellum's cellulosomal xylanase Z that displays feruloyl esterase activity. The structure was obtained via multiple isomorphous replacement with anomalous scattering (MIRAS) using three heavy atom derivatives and refined against X-ray diffraction data of up to 1.75 Angstrom resolution. The R-value of the final model was 0.187 (R-free = 0.21). FAE_XynZ displays an eight-stranded alpha/beta -fold with the characteristic catalytic triad at the heart of the active site. To define the substrate specificity determinants of the enzyme, the crystal structures of FAE_XynZ and the inactive FAE_XynZ(S172A) mutant were determined in complexes with the feruloyl-arabinoxylans FAXX and FAX(3), respectively. In the complex crystals, the ferulic acid moieties are clearly recognizable and allowed identification of the hydrophobic binding pocket. The carbohydrate part of both substrates is not visible in either structure. The location of the putative carbohydrate binding-pocket was inferred based on the location and orientation of the adjacent ferulic acid molecule. Five of the six residues lining the pocket were found to be conserved in FAE A from Orpinomyces sp., which further supports the proposed role of these amino acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据