4.5 Article

Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 105, 期 42, 页码 10249-10256

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp012838u

关键词

-

向作者/读者索取更多资源

Results are presented for flame synthesis of metal-catalyzed carbon nanotubes. A thermal evaporation technique is used to create the catalyst nanoparticles of Fe or Ni through gas condensation followed by entrainment into the flame. Results are compared with those using a high-temperature tube furnace to provide the reactive environment. Each system yields consistent results, with CO/H2 mixtures generally yielding single-walled nanotubes (SWNTs) with Fe while C2H2/H2 mixtures usually produce multiwalled nanotubes (MWNTs) with Ni. A ternary gas mixture of CO/C2/H2 produces a better yield of nanofibers than either a COM2 or C2H2/H2 mixture at 700 degreesC with Ni catalyst. Our results reflect a combination or possibly a synergy between thermal- plus adsorbate-induced restructuring and adsorbate-particle steric factors affecting particle structure and reactivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据