4.7 Article

Influence of fiber coating thickness on fracture behavior of continuous woven Nicalon® fabric-reinforced silicon-carbide matrix ceramic composites

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0921-5093(01)01184-4

关键词

ceramic composites; interface; fiber; fracture; coating thickness; silicon carbide

向作者/读者索取更多资源

Nicalon((R)) plain-weave fiber fabric-reinforced silicon carbide (SiC) matrix composites with various pyrolytic carbon fiber/matrix interface coating thicknesses have been successfully fabricated by forced chemical vapor infiltration (FCVI) methods. The influence of the carbon interface coating thickness on the fracture behavior of these fiber fabric-reinforced SiC composites has been investigated. Experimental results indicate that fiber coating thickness significantly alters the fracture behavior of SiC composites. The fracture strength exhibits a maximum as the coating thickness increases. A theoretical model has been developed to simulate the fracture behavior in the SiC composites with varied carbon interface coatings. The model assumes that microcracking, which is due to low matrix toughness, initiates and arrests continuously. The model-predicted fracture behavior compares well with the experimental results. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据