4.8 Article

Molecular recognition of sialyl Lewisx and related saccharides by two lectins

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 123, 期 43, 页码 10705-10714

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja011156h

关键词

-

向作者/读者索取更多资源

The interaction of sialyl Lewis(x), Lewis(x), and alpha -L-Fuc-(1 -->3)-beta -D-GlcNAc with isolectin A from Lotus tetragonolobus (LTL-A), and with Aleuria aurantia agglutinin (AAA) was studied using NMR experiments and surface plasmon resonance. Both lectins are specific for fucose residues. From NMR experiments it was concluded that alpha -L-Fuc-(1 -->3)-P-D-GlcNAc and Lewis(x) bound to both lectins, whereas sialyl Lewis(x) only bound to AAA. Increased line broadening of H-1 NMR signals of the carbohydrate ligands upon binding to AAA and LTL-A suggested that AAA bound to the ligands more tightly. Further comparison of line widths showed that for both lectins binding strengths decreased from alpha -L-Fuc-(1 -->3)-beta -D-GlcNAc to Lewis(x) and were lowest for sialyl Lewis(x). Surface plasmon resonance measurements were then employed to yield accurate dissociation constants. TrNOESY, QUIET-trNOESY, and trROESY experiments delivered bioactive conformations of the carbohydrate ligands, and STD NMR experiments allowed a precise epitope mapping of the carbohydrates bound to the lectins. The bioactive conformation of Lewis(x) bound to LTL-A, or AAA revealed an unusual orientation of the fucose residue, with negative values for both dihedral angles, phi and psi, at the alpha (1 --> -3)-glycosidic linkage. A similar distortion of the fucose orientation was also observed for sialyl Lewis(x) bound to AAA. From STD NMR experiments it followed that only the L-fucose residues are in intimate contact with the protein. Presumably steric interactions are responsible for locking the sialic acid residue of sialyl Lewis(x) in one out of many orientations that are present in aqueous solution. The sialic acid residue of sialyl Lewis(x) bound to AAA adopts an orientation similar to that in the corresponding sialyl Lewis(x)/E-selectin complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据