4.4 Article

Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine

期刊

MOLECULAR PHYSICS
卷 99, 期 21, 页码 1825-1829

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268970110075158

关键词

-

向作者/读者索取更多资源

Non-equilibrium molecular dynamics (NEMD) simulations play a major role in characterizing the rheological properties of fluids undergoing shear flow. However, all previous studies of flows in molecular fluids either use an 'atomic' thermostat which makes incorrect assumptions concerning the streaming velocity of atoms within their constituent molecules, or they employ a centre of mass kinetic (COM) thermostat which only controls the temperature of relatively few degrees of freedom (3) in complex high molecular weight compounds. In the present paper we show how recently developed configurational expressions for the thermodynamic temperature can be used to develop thermostatting mechanisms which avoid both of these problems. In this work, we propose a thermostat based on a configurational expression for the temperature and apply it to NEMD simulations of chlorine undergoing Couette flow. The results so obtained are compared with those obtained using a COM kinetic thermostat. At equilibrium the properties of systems thermostatted in the two different ways are of course equivalent. We show that the two responses only differ far from equilibrium. In particular, we show that the formation of a string phase for extremely high shear rates is an artefact of the COM thermostat. At the largest shear rates studied with the configurational thermostat, no string phase is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据