4.3 Article

Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?

期刊

BIOTECHNOLOGY PROGRESS
卷 17, 期 6, 页码 1049-1054

出版社

WILEY
DOI: 10.1021/bp0101177

关键词

-

向作者/读者索取更多资源

In an attempt to elucidate the impact of substrate accessibility to cellulases on the susceptibility of lignocellulosic substrates to enzymatic hydrolysis, a hydrogen peroxide treated, Douglas fir kraft pulp was dried using several methods with varying levels of intensity. Oven-drying at 50 and 100 degreesC, air-drying, and freeze-drying methods were employed to remove the interfibrillar water from the pulp samples. Subsequently, the never-dried and variably dried pulps were hydrolyzed using a commercial cellulase preparation supplemented with additional beta -glucosidase. Drying reduced the susceptibility of the substrates to enzymatic hydrolysis, which can be attributed to the hornifying effect that drying has on fibers. This effect was more pronounced for the fibers that were oven-dried at 100 degreesC (23% reduction) and 50 degreesC (15% reduction), and there was a good correlation between the Simons's stain results and the enzymatic digestibility of the dried pulps. These observations indicated that drying significantly reduced the population of larger pores and that the partial closure of larger pores created a large number of smaller pores that were not accessible to the displacement dye molecules (orange dye). The inaccessibility of the cellulose to the enzymes, due to the collapse or closure of the large pores, appears to be the primary reason for the lower susceptibility of the dried pulps to enzymatic hydrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据