4.7 Article

The convection-diffusion equation for a finite domain with time varying boundaries

期刊

APPLIED MATHEMATICS LETTERS
卷 14, 期 8, 页码 983-988

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0893-9659(01)00076-3

关键词

chemical transport; Danckwerts conditions; error estimate; Robin conditions

向作者/读者索取更多资源

A solution is developed for a convection-diffusion equation describing chemical transport with sorption, decay, and production. The problem is formulated in a finite domain where the appropriate conservation law yields Robin conditions at the ends. When the input concentration is arbitrary, the problem is underdetermined because of an unknown exit concentration. We resolve this by defining the exit concentration as a solution to a similar diffusion equation which satisfies a Dirichlet condition at the left end of the half line. This problem does not appear to have been solved in the literature, and the resulting representation should be useful for problems of practical interest. Authors of previous works on problems of this type have eliminated the unknown exit concentration by assuming a continuous concentration at the outflow boundary. This yields a well-posed problem by forcing a homogeneous Neumann exit, widely known as Danckwerts condition. We provide a solution to that problem and use it to produce an estimate which demonstrates that Danckwerts condition implies a zero concentration at the outflow boundary, even for a long flow domain and a large time. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据