4.5 Article

Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator

期刊

MOLECULAR MICROBIOLOGY
卷 42, 期 4, 页码 1095-1105

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1365-2958.2001.02705.x

关键词

-

向作者/读者索取更多资源

The putative Kluyveromyces lactis zymocin target complex, TOT, from Saccharomyces cerevisiae comprises five Tot proteins, four of which are RNA polymerase II (RNAP II) Elongator subunits. Recently, two more Elongator subunit genes, ELP6 (TOT6) and ELP4 (TOT7), have been identified. Deletions of both TOT6 and TOT7 result in the complex tot phenotype, including resistance to zymocin, thermosensitivity, slow growth and hypersensitivity towards drugs, thus reinforcing the notion that TOT/Elongator may be crucial in signalling zymocicity. Mutagenesis of ELP3/TOT3, the Elongator histone acetyltransferase (HAT) gene, revealed that zymocin sensitivity could be uncoupled from Elongator wild-type function, indicating that TOT interacts genetically with zymocin. To test the possibility that zymocin functions by affecting RNAP II activity in a TOT/Elongator-dependent manner, global poly(A)(+) mRNA levels were found to decline drastically on zymocin treatment. Moreover, cells overexpressing Fcp1p, the RNAP II carboxy-terminal domain phosphatase, acquired partial zymocin resistance, whereas cells underproducing RNAP II became zymocin hypersensitive. This suggests that zymocin may convert TOT/E-longator into a cellular poison toxic for RNAP II function and eventually leading to the observed G1 cell cycle arrest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据