4.7 Article Proceedings Paper

Oxygen radicals in cerebral ischemia - The 2001 Willis Lecture

期刊

STROKE
卷 32, 期 11, 页码 2712-2716

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hs1101.098653

关键词

glutamates; hydrogen peroxide; hydroxyl radical; nitrates; superoxides; receptors, AMPA; receptors, NMDA; vasodilation

资金

  1. NINDS NIH HHS [NS 19316] Funding Source: Medline

向作者/读者索取更多资源

The sequential univalent reduction of oxygen generates superoxide, hydrogen peroxide, and hydroxyl radical. The generation of hydroxyl radical is dependent on catalysis by ferrous iron. In addition, superoxide and nitric oxide produce peroxynitrite, which spontaneously generates hydroxyl radical independently of iron-mediated catalysis. These agents have a variety of cellular actions, which render them suitable candidates as mediators of tissue destruction and cellular death. In the intact brain, superoxide and its derivatives cause vasodilation, mediated by opening of potassium channels, altered vascular reactivity, breakdown of the blood-brain barrier, and focal destructive endothelial lesions. These abnormalities are also seen in early reperfusion following brain ischemia. During reperfusion there is a marked transient increase in superoxide production. Vasodilation, abnormal vascular reactivity, and blood-brain barrier breakdown are inhibited by eliminating superoxide. Superoxide production during reperfusion may be initiated by glutamate via activation of alpha -amino-3-hydroxy-5-methylisoxasolepropionic acid (AMPA) receptors. These experimental findings have important implications for human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before or in the early stages of reperfusion following ischemia. The therapeutic window appears to be narrow and limited to, at most, a few hours. The inhibition of AMPA receptors may be a promising approach to inhibit the production of oxygen radicals during ischemia-reperfusion of the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据