4.5 Article

Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings

期刊

AIAA JOURNAL
卷 39, 期 11, 页码 2033-2041

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/2.1206

关键词

-

向作者/读者索取更多资源

The geometric representation and parameterization used in an aerodynamic wing design process determines the number of design variables and influences the smoothness of the wing representation. In an attempt to reduce the number of design variables while preserving good smoothness properties, the present research investigates the performance of an optimized nonuniform rational B-spline (NURBS) geometrical representation for the aerodynamic design of wings. As a first step, an approach is described whereby optimal spatial positions and weights of a fixed number of NURBS control points is determined using a quasi-Newton optimization algorithm to approximate a general airfoil section. The resulting optimized NURBS representation significantly reduces the number of design variables needed to define accurately a wing section while ensuring good smoothness properties. In a second step, the NURBS control point positions and weights are used as design variables in an aerodynamic optimization problem. This methodology results in a rapid and robust design process, as illustrated by examples of aerodynamic optimization for two- and three-dimensional cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据