4.4 Article

Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 30, 期 6, 页码 2091-2098

出版社

AMER SOC AGRONOMY
DOI: 10.2134/jeq2001.2091

关键词

-

向作者/读者索取更多资源

A constant anthropogenic release of cadmium to the environment has resulted in a continuous buildup of Cd in soils. Uptake and accumulation of Cd in plant tissue and in grains may lead to food chain transfer to humans. Application of synthetic chelates was suggested to increase metal mobilization and facilitate phytoextraction as a means for the remediation of metal-polluted soils. However, most of the chelate-extracted metal may be leached rather than mobilized to plant roots. In contrast to the synthetic chelates added to soils, plant-produced chelators called phytosiderophores (PS) are excreted directly to the rhizosphere. Previous studies have shown that PS facilitate uptake of Zn and Fe by graminaceous plants. In this study, a two-step PS mediation of Cd uptake was hypothesized: (i) extraction and chelation in the soil solution, and (ii) delivery of the chelated Cd to the uptake system of the plant. We examined Cd extraction by PS, the synthetic chelate HEDTA [N-(2-hydroxyethyl)-ethylenediamine-triacetic acid], and a fungal siderophore rhizoferrin from solid-phase Cd phosphate at pit 7.3 with and without Fe competition in the presence of Ca and Mg as additional competing metals. While rhizoferrin did not extract Cd, PS and HEDTA did extract Cd even in the presence of Fe. Yet, uptake of Cd by wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants was not significantly influenced by Fe stress, but instead was controlled primarily by Cd2+ activity in solution. These results suggest that even though Cd may be mobilized by PS, there is no significant uptake of the Cd-PS complex by the plant roots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据