4.7 Article Proceedings Paper

Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/36.964984

关键词

data fusion; interferometry; inverse problems; laser altimetry; multiscale estimation; scattering models; synthetic aperture radar (SAR)

向作者/读者索取更多资源

Interferometric synthetic aperture radar (INSAR) and laser altimeter (LIDAR) systems are both widely used for mapping topography. INSAR can map extended areas but accuracies are limited over vegetated regions, primarily because the observations are not measurements of true surface topography. The measurements correspond to a height above the true surface that depends on both the sensor and the vegetation. Conversely, topography from LIDAR is very accurate, but coverage is limited to smaller regions. We demonstrate how these technologies can be used synergistically. First, we determine surface elevations and vegetation heights from dual-baseline INSAR data by inverting an INSAR scattering model. We then combine sparse LIDAR observations with the INSAR inversion results to improve the estimates of ground elevations and vegetation heights. This is accomplished via a multiresolution Kalman Filter that provides both the estimates and a measure of their uncertainty at each location. Combining data from the two sensors provides estimates that are more accurate than those obtained from INSAR alone yet have dense, extensive coverage, which is difficult to obtain with LIDAR. Contributions of this work include 1) combining physical modeling with multiscale estimation to accommodate nonlinear measurement-state relationships and 2) improving estimates of ground elevations and vegetation heights for remote sensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据