4.4 Review

Anatomy of relativistic energy corrections in light molecular systems

期刊

MOLECULAR PHYSICS
卷 99, 期 21, 页码 1769-1794

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268970110073907

关键词

-

向作者/读者索取更多资源

Relativistic energy corrections which arise from the use of the Dirac-Coulomb Hamiltonian, and the Gaunt and Breit interaction operators, plus Lamb-shift effects have been determined for the global minima of the ground electronic states of C2H6, NH3, H2O, [H, C, N], HNCO, HCOOH, SiC2, SiH3-, and H2S, and for barrier characteristics for these molecular systems (inversion barrier of NH3 and SiH3-, barrier to linearity of H2O, H2S, and HNCO, rotational barrier of C2H6, difference between conformations of HCOOH (Z/E) and SiC2 (linear/T-shaped), and isomerization barrier of HCN/HNC). The relativistic calculations performed at the Hartree-Fock and the highly correlated CCSD(T) levels employed a wide variety of basis sets. Comparison of the perturbational and the four-component fully variational results indicate that the Coulomb-Pauli Hamiltonian and the lowest order Hamiltonian of direct perturbation theory (DPT(2)) are highly successful for treating the relativistic energy effects in light molecular systems both at a single point on the potential energy hypersurface and along the surface. Electron correlation contributions to the relativistic corrections are relatively small for the systems studied, and are comparable with the 2-electron Darwin correction. Corrections beyond the Dirac-Coulomb treatment are usually rather small, but may become important for high accuracy ab initio calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据