4.8 Editorial Material

Feast or famine Role of TRPML in preventing cellular amino acid starvation

期刊

AUTOPHAGY
卷 9, 期 1, 页码 98-100

出版社

LANDES BIOSCIENCE
DOI: 10.4161/auto.22260

关键词

TRP channels; mucolipin; mucolipidosis type IV; autophagy; MLIV; TORC1; MTOR; amino acids; endosomal

向作者/读者索取更多资源

Lysosomal storage diseases are metabolic disorders characterized by the accumulation of acidic vacuoles, and are usually the consequence of the deficiency of an enzyme responsible for the metabolism of vesicular lipids, proteins or carbohydrates. In contrast, mucolipidosis type IV (MLIV), results from the absence of a vesicular Ca2+ release channel called mucolipin 1/transient receptor potential mucolipin 1 (MCOLN1/TRPML1) which is required for the fusion of amphisomes with lysosomes. In Drosophila, ablation of the MCOLN1 homolog (trpml) leads to diminished viability during pupation when the animals rely on autophagy for nutrients. This pupal lethality results from decreased target of rapamycin complex 1 (TORC1) signaling, and is reversed by reactivating TORC1. Our findings indicate that one of the primary causes of toxicity in the absence of TRPML is cellular amino acid starvation, and the resulting decrease in TORC1 activity. Furthermore, our findings raise the intriguing possibility that the neurological dysfunction in MLIV patients may arise from amino acid deprivation in neurons. Therefore, future studies evaluating the levels of amino acids and TORC1 activity in MLIV neurons may aid in the development of novel therapeutic strategies to combat the severe manifestations of MLIV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据