4.8 Editorial Material

Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease

期刊

AUTOPHAGY
卷 8, 期 6, 页码 970-972

出版社

LANDES BIOSCIENCE
DOI: 10.4161/auto.20139

关键词

Huntington disease; autophagy; XBP1; ER stress; aging; neurodegeneration

向作者/读者索取更多资源

Huntington disease (HD) is caused by an extended polyglutamine [poly(Q)] stretch in the Huntingtin (HTT) protein, and is associated with the accumulation of intracellular protein aggregates, onset of progressive chorea, psychiatric symptoms and dementia. Although the mechanism underlying the pathological effects of mutant HTT (mHTT) remains highly controversial, accumulating evidence suggest that protein-folding stress at the endoplasmic reticulum (ER) may contribute to mHTT-mediated degeneration. ER stress is alleviated by the activation of an adaptive reaction known as the unfolded protein response (UPR), whereas chronic ER stress triggers apoptosis by the same pathway. However, most of the studies linking ER stress with HD in vivo are correlative. UPR signaling is initiated by the activation of at least three distinct stress sensors located at the ER membrane known as ERN1/IRE1 alpha, EIF2AK3/PERK and ATF6. These stress sensors control the expression of specialized transcription factors that modulate the upregulation of a variety of target genes involved in folding, protein quality control, autophagy and protein synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据