4.8 Article

Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 35, 期 21, 页码 4227-4234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es010663w

关键词

-

向作者/读者索取更多资源

To more fully understand the potential for transport of nitroaromatic compounds in soils and subsoils,the adsorption of a series of para- and meta-substituted nitrobenzenes (SNBs) by K-smectite clay was measured. Adsorption isotherms were fit to the Freundlich equation, and the resultant Freundlich adsorption coefficients (log(K-f)) were positively correlated with the Hammett substituent constant (r(2) = 0.80). This relationship and a positive reaction constant (rho = 1.15) indicate that the adsorption reaction is favored by electron-withdrawing substituents. These results are consistent with an electron donor (smectite)-acceptor (substituted nitrobenzene) mechanism offered previously. However, quantum calculations did not reveal any systematic relationship between the Hammett constant and the electron density on the aromatic ring, which would explain a donor-acceptor relationship. Rather, electron density donated by a second substituent on nitrobenzene appears to be appropriated by the nitro group leaving ring electron density unchanged. Fourier transform infrared spectroscopy revealed shifts in the -NO2 vibrational modes of 1,3,5-trinitrobenzene (TNB) upon adsorption to K+-smectite that were consistent with the complexation of K+ by -NO2 groups. Such TNB vibrational shifts were not observed for SWy-1 saturated with more strongly hydrated cations (i.e., Na+, Mg2+, Ca2+, and Ba2+). The simultaneous interaction of multiple -NO2 groups with exchangeable K+ was indicated by molecular dynamic simulations. Adsorption of SNBs by smectite clays appears to result from the additive interactions of -NO2 groups and secondary substituents with interlayer K+ ions. Adsorption occurs to a greater or lesser extent depending on the abilities of substituents to complex additional interlayer cations and the water solubilities of SNBs. We conclude that the adsorption trends of SNBs on K-SAz-1 can be explained without recourse to hypothetical electron donor-acceptor complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据