4.8 Article

Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways

期刊

AUTOPHAGY
卷 4, 期 6, 页码 762-769

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/auto.6412

关键词

ischemia; autophagy; LC3; cathepsin B; 3-methyl-adenine

资金

  1. Natural Science Foundation of Jiangsu Province [BK2004037, 2007548]
  2. Natural Science Foundation of China [30470587]
  3. Suzhou social progress foundation [SS0517, SS0729, SZS0703]

向作者/读者索取更多资源

It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced down-regulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据