4.8 Article

Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model - Molecular mechanisms of delayed angiogenesis in diabetes

期刊

CIRCULATION
卷 104, 期 19, 页码 2344-2350

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hc4401.098470

关键词

peripheral vascular disease; endothelium; angiogenesis; gene therapy; growth substances

向作者/读者索取更多资源

Background-Because no study has documented the angiogenic properties of hepatocyte growth factor (HGF) in a diabetes model, we examined the feasibility of gene therapy using HGF to treat peripheral arterial disease in diabetes. Methods and Results-Because intramuscular injection of luciferase plasmid by the hemagglutinating virus of Japan (HVJ)-liposome method had much higher efficiency than injection of naked plasmid, we used the HVJ-liposome method to transfect the human HGF gene into the rat diabetic hindlimb model. As expected, transfection of human HGF vector resulted in a significant increase in blood flow as assessed by laser Doppler imaging and capillary density, even in the diabetes model, accompanied by the detection of human HGF protein. Interestingly, the degree of natural recovery of blood flow was significantly greater in nondiabetic rats than in diabetic rats. Thus, in an in vitro culture system, we further studied the molecular mechanisms of how diabetes delayed angiogenesis. Importantly, high-D-glucose treatment of endothelial cells resulted in a significant decrease in matrix metalloproteinase (MMP)-1 protein and ets-1 expression in human aortic endothelial cells. Similarly, high D-glucose significantly decreased mRNA and protein of HGF in endothelial cells. Downregulation of MMP-1 and ets-1 by high D-glucose might be due to a significant decrease in HGF, because HGF stimulated MMP-1 production and activated ets-1. Conclusions-Overall, intramuscular injection of human HGF plasmid induced therapeutic angiogenesis in a rat diabetic ischemic hindlimb model as a potential therapy for peripheral arterial disease. The delay of angiogenesis in diabetes might be due to downregulation of MMP-1 and ets-1 through a decrease in HGF by high D-glucose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据