4.7 Article

Interaction between PEVK-titin and actin filaments - Origin of a viscous force component in cardiac myofibrils

期刊

CIRCULATION RESEARCH
卷 89, 期 10, 页码 874-881

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hh2201.099453

关键词

connectin; passive tension; myofibril mechanics; myocardial viscosity; actin binding protein

向作者/读者索取更多资源

The giant muscle protein titin contains a unique sequence, the PEVK domain, the elastic properties of which contribute to the mechanical behavior of relaxed cardiomyocytes. Here, human N2-B-cardiac PEVK was expressed in Escherichia coli and tested-along with recombinant cardiac titin constructs containing immunoglobulin-like or fibronectin-like domains-for a possible interaction with actin filaments. In the actomyosin in vitro motility assay, only the PEVK construct inhibited actin filament sliding over myosin. The slowdown occurred in a concentration-dependent manner and was accompanied by an increase in the number of stationary actin filaments. High [Ca2+] reversed PEVK effect. PEVK concentrations greater than or equal to 10 mug/mL caused actin bundling. Actin-PEVK association was found also in actin fluorescence binding assays without myosin at physiological ionic strength. In cosedimentation assays, PEVK-titin interacted weakly with actin at 0 degreesC, but more strongly at 30 degreesC, suggesting involvement of hydrophobic interactions. To probe the interaction in a more physiological environment, nonactivated cardiac myofibrils were stretched quickly, and force was measured during the subsequent hold period. The observed force decline could be fit with a three-order exponential-decay function, which revealed an initial rapid-decay component (time constant, 4 to 5 ms) making up 30% to 50% of the whole decay amplitude. The rapid, viscous decay component, but not the slower decay components, decreased greatly and immediately on actin extraction with Ca2+-independent gelsolin fragment, both at physiological sarcomere lengths and beyond actin-myosin overlap. Steady-state passive force dropped only after longer exposure to gelsolin. We conclude that interaction between PEVK-titin and actin occurs in the sarcomere and may cause viscous drag during diastolic stretch of cardiac myofibrils. The interaction could also oppose shortening during contraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据