4.5 Article

Iterated D-SLAM map joining: evaluating its performance in terms of consistency, accuracy and efficiency

期刊

AUTONOMOUS ROBOTS
卷 27, 期 4, 页码 409-429

出版社

SPRINGER
DOI: 10.1007/s10514-009-9153-8

关键词

SLAM; Consistency; Sparse matrix

资金

  1. Australian Research Council (ARC)
  2. New South Wales State Government
  3. DFG [SFB/TR 8]

向作者/读者索取更多资源

This paper presents a new map joining algorithm and a set of metrics for evaluating the performance of mapping techniques. The input to the new map joining algorithm is a sequence of local maps containing the feature positions and the final robot pose in a local frame of reference. The output is a global map containing the global positions of all the features but without any robot poses. The algorithm is built on the D-SLAM mapping algorithm (Wang et al. in Int. J. Robot. Res. 26(2):187-204, 2007) and uses iterations to improve the estimates in the map joining step. So it is called Iterated D-SLAM Map Joining (I-DMJ). When joining maps I-DMJ ignores the odometry information connecting successive maps. This is the key to I-DMJ efficiency, because it makes both the information matrix exactly sparse and the size of the state vector bounded by the number of features. The paper proposes metrics for quantifying the performance of different mapping algorithms focusing on evaluating their consistency, accuracy and efficiency. The I-DMJ algorithm and a number of existing SLAM algorithms are evaluated using the proposed metrics. The simulation data sets and a preprocessed Victoria Park data set used in this paper are made available to enable interested researchers to compare their mapping algorithms with I-DMJ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据