4.5 Article

An investigation of the reaction pathway for ethylene hydrogenation on Pd(111)

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 105, 期 45, 页码 11233-11239

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp012553h

关键词

-

向作者/读者索取更多资源

The hydrogenation of ethylene on Pd(111) is probed using a combination of temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethylene adsorbs on clean Pd(111) in a di-sigma configuration but converts to pi -bonded species when the surface is presaturated by hydrogen. Ethane is formed with an activation energy of 3.0 +/- 0.3 kcal/mol only when Pd(111) is pre-covered by hydrogen and not when ethylene and hydrogen are co-dosed, indicating that ethylene blocks hydrogen adsorption. Experiments performed by grafting ethyl species onto the surface by reaction with ethyl iodide indicate that ethyl species hydrogenate much more rapidly than the overall rate of ethylene hydrogenation, demonstrating that the addition of the first hydrogen atom to adsorbed ethylene to form an ethyl species is the rate-limiting step in the hydrogenation reaction. The adsorption geometry of ethyl iodide is found to depend on dosing conditions. When adsorbed at low exposures at 80 K, the mirror symmetry plane of ethyl iodide is oriented close to parallel to the surface. At higher exposures, it adopts a geometry in which the symmetry plane is closer to perpendicular to the surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据