4.1 Article

Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model

期刊

AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL
卷 169, 期 2, 页码 77-86

出版社

ELSEVIER
DOI: 10.1016/j.autneu.2012.04.005

关键词

Parkinson's disease; Enteric nervous system; Gut dysfunction; Neurochemical plasticity; D2 receptor

资金

  1. Italian Ministry of Health
  2. Italian Ministry of University and Research

向作者/读者索取更多资源

Gastrointestinal disorders, constipation in particular, are the most common non-motor dysfunctions affecting Parkinson's disease (PD) patients. We have previously reported that rats bearing unilateral nigrostriatal lesion caused by 6-hydroxydopamine (6-OHDA) stereotaxic injection develop severe constipation together with a region-specific decrease of neuronal nitric oxide synthase (nNOS) in enteric neurons of the lower intestinal tract. Here, we extend these observations on other enteric neuronal subpopulations, investigating also the propulsive activity of isolated colonic specimens. Four weeks post 6-OHDA injection, lesioned rats showed a significant increase of vasoactive intestinal polypeptide (VIP) concomitant with the reduced expression of nNOS in the myenteric plexus of distal ileum and proximal colon: in particular VIP increased in a subpopulation of neurons actively expressing nNOS. On the other hand, choline acetyltransferase (ChAT) was not modified in any of the intestinal segments analyzed. Interestingly, we found a reduced expression of dopamine receptor type 2 (D2R) in proximal (-66.8%) and distal (-54.5%) colon, together with reduced peristalsis efficiency (decrease in intraluminal pressure and frequency of peristaltic events) in the 6-OHDA-lesioned rats. The selective depletion of dopaminergic nigrostriatal neurons is associated with changes in the expression of enteric inhibitory neurotransmitters, as well as of the D2R in intestinal specific regions. Moreover, 6-OHDA-lesioned rats demonstrated altered colon propulsive activity referable to the D2R decrease. Our findings unveil subtle mechanisms underlying the enteric neurochemical plasticity events evoked by disruption of the normal brain-gut cross-talk, giving a peculiar point of view on the pathophysiology of the severe constipation that frequently affects PD patients. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据