4.8 Article

The central nervous system stabilizes unstable dynamics by learning optimal impedance

期刊

NATURE
卷 414, 期 6862, 页码 446-449

出版社

MACMILLAN PUBLISHERS LTD
DOI: 10.1038/35106566

关键词

-

向作者/读者索取更多资源

To manipulate objects or to use tools we must compensate for any forces arising from interaction with the physical environment. Recent studies indicate that this compensation is achieved by learning an internal model of the dynamics(1-6), that is, a neural representation of the relation between motor command and movement(5,7). In these studies interaction with the physical environment was stable, but many common tasks are intrinsically unstable(8,9). For example, keeping a screwdriver in the slot of a screw is unstable because excessive force parallel to the slot can cause the screwdriver to slip and because misdirected force can cause loss of contact between the screwdriver and the screw. Stability may be dependent on the control of mechanical impedance in the human arm because mechanical impedance can generate forces which resist destabilizing motion. Here we examined arm movements in an unstable dynamic environment created by a robotic interface. Our results show that humans learn to stabilize unstable dynamics using the skilful and energy-efficient strategy of selective control of impedance geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据