4.7 Article

One-dimensional turbulence: vector formulation and application to free shear flows

期刊

JOURNAL OF FLUID MECHANICS
卷 447, 期 -, 页码 85-109

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001005778

关键词

-

向作者/读者索取更多资源

One-dimensional turbulence is a stochastic simulation method representing the time evolution of the velocity profile along a notional line of sight through a turbulent flow. In this paper, the velocity is treated as a three-component vector, in contrast to previous formulations involving a single velocity component. This generalization allows the incorporation of pressure-scrambling effects and provides a framework for further extensions of the model. Computed results based on two alternative physical pictures of pressure scrambling are compared to direct numerical simulations of two time-developing planar free shear flows: a mixing layer and a wake. Scrambling based on equipartition of turbulent kinetic energy on an eddy-by-eddy basis yields less accurate results than a scheme that maximizes the intercomponent energy transfer during each eddy, subject to invariance constraints. The latter formulation captures many features of free shear flow structure, energetics, and fluctuation properties, including the spatial variation of the probability density function of a passive advected scalar. These results demonstrate the efficacy of the proposed representation of vector velocity evolution on a one-dimensional domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据