4.4 Article

Lanthanum hexaaluminate - a new material for atmospheric plasma spraying of advanced thermal barrier coatings

期刊

JOURNAL OF THERMAL SPRAY TECHNOLOGY
卷 10, 期 4, 页码 592-598

出版社

ASM INTERNATIONAL
DOI: 10.1361/105996301770349105

关键词

APS; atmospheric plasma spraying; lanthanum hexaaluminate; magnetoplumbite; thermal barrier coating; thermal spraying

向作者/读者索取更多资源

One of the main application fields of the thermal spraying process is thermal barrier coatings (TBCs). Today, partially stabilized zirconia (YSZ or MSZ) is mainly used as a TBC material. At temperatures above 1000 degreesC, zirconia layers age distinctively, including phenomena shrinkage and microcrack formation. Therefore, there is a considerable interest in TBCs for higher temperature applications. In this paper, lanthanum hexaaluminate, a newly developed TBC material with long-term stability up to 1400 degreesC, is presented. It ages significantly more slowly at these high temperatures than commercial zirconia-based TBCs. Its composition favors the formation of platelets, which prevent a densification of the coating by postsintering. It consists of La2O3, Al2O3, and MgO. Its crystal structure corresponds to a magnetoplumbite phase. Lanthanum hexaaluminate powders were produced using two different fabrication routes, one based on salts and the other one based on oxides. To optimize the granulate, various raw materials and additives were tested. The slurry was spray dried in a laboratory spray drier and calcined at 1650 degreesC. Using these two powders, coatings were produced by atmospheric plasma spraying (APS). The residual stresses of the coatings were measured by the hole drilling method, and the deposition process was optimized with respect to the residual stresses in the TBC. The coatings were extensively analyzed regarding phase composition, thermal expansion, and long-term stability, as well as microstructural properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据