4.4 Article Proceedings Paper

Jaw muscles and the skull in mammals: the biomechanics of mastication

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1095-6433(01)00472-X

关键词

bone strain; mandible; mastication; masticatory muscles; maxilla; pig; skull; suture

资金

  1. NIDCR NIH HHS [F32 DE05731, R01 DE08513, R01 DE11962] Funding Source: Medline

向作者/读者索取更多资源

Among non-mammalian vertebrates, rigid skulls with tight sutural junctions are associated with high levels of cranial loading. The rigid skulls of mammals presumably act to resist the stresses of mastication. The pig, Sus scrofa, is a generalized ungulate with a diet rich in resistant foods. This report synthesizes previous work using strain gages bonded to the bones and sutures of the braincase, zygomatic arch, jaw joint, and mandible with new studies on the maxilla. Strains were recorded during unrestrained mastication and/or in anesthetized pigs during muscle stimulation. Bone strains were 100-1000 mu,epsilon, except in the braincase, but sutural strains were higher, regardless of region. Strain regimes were specific to different regions, indicating that theoretical treatment of the skull as a unitary structure is probably incorrect. Muscle contraction, especially the masseter, caused strain patterns by four mechanisms: (1) direct loading of muscle attachment areas; (2) a compressive reaction force at the jaw joint; (3) bite force loading on the snout and mandible, and (4) movement causing new points of contact between mandible and cranium. Some expected patterns of loading were not seen. Most notably, strains did not differ for right and left chewing, perhaps because pigs have bilateral occlusion and masseter activity. (C) 2001 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据