4.4 Article

Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 86, 期 6, 页码 2667-2677

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2001.86.6.2667

关键词

-

向作者/读者索取更多资源

We examined passive and active membrane properties and synaptic responses of medium-sized spiny striatal neurons in brain slices from presymptomatic (similar to 40 days of age) and symptomatic (similar to 90 days of age) R6/2 transgenics, a mouse model of Huntington's disease (HD) and their age-matched wild-type (WT) controls. This transgenic expresses exon 1 of the human HD gene with similar to 150 CAG repeats and displays a progressive behavioral phenotype associated with numerous neuronal alterations. Intracellular recordings were obtained using standard techniques from R6/2 and age-matched WT mice. Few electrophysiological changes occurred in striatal neurons from presymptomatic R6/2 mice. The changes in this age group were increased neuronal input resistance and lower stimulus intensity to evoke action potentials (rheobase). Symptomatic R6/2 mice exhibited numerous electrophysiological alterations, including depolarized resting membrane potentials, increased input resistances, decreased membrane time constants, and alterations in action potentials. Increased stimulus intensities were required to evoke excitatory postsynaptic potentials (EPSPs) in neurons from symptomatic R6/2 transgenics. These EPSPs had slower rise times and did not decay back to baseline by 45 ms, suggesting a more prominent component mediated by activation of N-methyl-D-aspartate receptors. Neurons from both pre and symptomatic R6/2 mice exhibited reduced paired-pulse facilitation. Data from biocytin-filled or Golgi-impregnated neurons demonstrated decreased dendritic spine densities, smaller diameters of dendritic shafts, and smaller dendritic fields in symptomatic R6/2 mice. Taken together, these findings indicate that passive and active membrane and synaptic properties of medium-sized spiny neurons are altered in the R6/2 transgenic. These physiological and morphological alterations will affect communication in the basal ganglia circuitry. Furthermore, they suggest areas to target for pharmacotherapies to alleviate and reduce the symptoms of HD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据