4.6 Article

Evolution of aggregate size and fractal dimension during Brownian coagulation

期刊

JOURNAL OF AEROSOL SCIENCE
卷 32, 期 12, 页码 1399-1420

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0021-8502(01)00056-8

关键词

-

向作者/读者索取更多资源

Fractal aggregate coagulation is described within a general framework of multivariate population dynamics. The effect of aggregate morphology on the coagulation rate, is taken into account explicitly, introducing in addition to aggregate particle size, the aggregate fractal dimension, as a second independent variable. A simple constitutive law is derived for determining the fractal dimension of an aggregate, resulting from a coagulation event between aggregates with different fractal dimensions. An efficient Monte Carlo method was implemented to solve the resulting bivariate Brownian coagulation equation, in the limits of continuum and free molecular flow regimes. The results indicate that as the population mean fractal dimension goes from its initial value towards its asymptotic value, the distribution of fractal dimension remains narrow for both flow regimes. The evolution of the mean aggregate size in the continuum regime is found to be nearly independent of aggregate morphology. In the free molecular regime however, the effects of aggregate morphology, as embodied in its fractal dimension, become more important. In this case the evolution of the aggregate size distribution cannot be described by the traditional approach, that employs a constant fractal dimension. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据