4.5 Article

Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 66, 期 5, 页码 914-922

出版社

WILEY
DOI: 10.1002/jnr.10064

关键词

branched chain amino acids; excitatory amino acids; glutamate; aspartate; malate/aspartate shuttle; gabapentin; L-cycloserine; aminotransferases

资金

  1. NINDS NIH HHS [NS 38641] Funding Source: Medline

向作者/读者索取更多资源

In this study aminotransferase inhibitors were used to determine the relative importance of different aminotransferases in providing nitrogen for de novo glutamate synthesis in the retina. Aminooxyacetate, which inhibits all aminotransferases, blocked de novo glutamate synthesis from (HCO3)-C-14 - by more than 60%. Inhibition of neuronal cytosolic branched chain amino acid transamination by gabapentin or branched chain amino acid transport by the L-system substrate analog, 2-amino-bicyclo-(2,2,1)-heptane-2-carboxylic acid, lowered total de novo synthesis of glutamate by 30%, suggesting that branched chain amino acids may account for half of the glutamate nitrogen contributed by transamination reactions. L-cycloserine, an inhibitor of alanine aminotransferase, inhibited glutamate synthesis less than 15% when added in the presence of 5 mM pyruvate but 47% in the presence of 0.2 mM pyruvate. Although high levels of pyruvate blunted the inhibitory effectiveness of L-cycloserine, the results indicate that, under physiological conditions, alanine as well as branched chain amino acids are probably the predominant sources of glutamate nitrogen in ex vivo retinas. The L-cycloserine results were also used to evaluate activity of the malate/aspartate shuttle. In this shuttle, cytosolic aspartate (synthesized in mitochondria) generates cytosolic oxaloacetate that oxidizes cytosolic NADH via malate dehydrogenase. Because L-cycloserine inhibits cytosolic but not mitochondrial aspartate aminotransferase, L-cycloserine should prevent the utilization of aspartate but not its generation, thereby increasing levels of C-14- aspartate. Instead, L-cycloserine caused a significant decline in C-14-aspartate. The results suggest the possibility that shuttle activity is low in retinal Muller cells. Low malate/aspartate shuttle activity may be the molecular basis for the high rate of aerobic glycolysis in retinal Muller cells. (C) 2001 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据