4.4 Article Proceedings Paper

Experimental constraints on the depth of olivine metastability in subducting lithosphere

期刊

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
卷 127, 期 1-4, 页码 165-180

出版社

ELSEVIER
DOI: 10.1016/S0031-9201(01)00226-6

关键词

olivine; wadsleyite; ringwoodite; kinetics; subduction; deep earthquakes

向作者/读者索取更多资源

The hypothesis that metastable olivine persists in some subducting slabs into the transition zone has wide implications for mantle dynamics and rheology. In order to evaluate this possibility we derive new thermo-kinetic subduction zone models to predict the extent of olivine metastability within the stability fields of its high-pressure polymorphs, wadsleyite and ringwoodite. Our updated models improve on previous work by incorporating experimental kinetic data on realistic mantle compositions ((Mg, Fe)(2)SiO4) rather than analogue systems. Furthermore, latent heat due to the transformation is fed back into both the kinetics and the thermal model. We also consider the effects of transformation stress on growth kinetics and the possibility of an intracrystalline transformation mechanism, previously thought to be important only at high shear stresses. Our models predict significantly smaller wedges of metastable olivine than previous work. In the case of Tonga, for example, where high values of lithospheric age (100-140 million years) and convergence rate (similar to 14 cm per year) are most favorable for metastability, models considering only grain boundary nucleation and interface-controlled growth predict olivine metastability to similar to 600km depth, in contrast to similar to 660km predicted previously by Kirby et al. [Rev. Geophys. 34 (1996) 261]. When intracrystalline transformation is considered, the depth of metastability is further reduced by as much as 100km, due to the large increase in the density of nucleation sites. Inhibition of growth by transformation stress can increase the depth interval over which the transformation takes place, but is unlikely to be a dominant factor, especially if the intracrystalline mechanism operates. These results indicate that the existence of metastable olivine at depths corresponding to those of the deepest earthquakes (similar to 680 km) requires subduction of old lithosphere (> 100 million years) and a high vertical subduction velocity (greater than or similar to 15 cm per year). Such conditions currently may only be achieved in the very northern part of the Tonga subduction zone, yet earthquakes occur at depths down to 680 km in other subduction zones in which lithospheric age and/or subduction velocity are relatively low (e.g. Indonesia and the Marianas). Therefore, mechanisms other than transformational faulting in metastable olivine must operate to cause the deepest earthquakes. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据