4.7 Article

Solubility and diffusivity of sodium chloride in phase-separated block copolymers of poly(2-dimethylaminoethyl methacrylate), poly (1,1'-dihydroperfluorooctyl methacrylate) and poly(1,1,2,2-tetrahydroperfluorooctyl acrylate)

期刊

POLYMER
卷 42, 期 25, 页码 9941-9948

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0032-3861(01)00549-3

关键词

block copolymers; freezing water; salt transport

向作者/读者索取更多资源

Solubility and diffusivity of sodium chloride were deter-mined in a series of dense films of phase-separated diblock and triblock copolymers composed of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and either poly(1, 1'-dihydroperfluorooctyl methacrylate (PFOMA) or poly(1,1,2,2-tetrahydroperfluorooctyI acrylate) (PTAN). As the content of hydrophilic PDMAEMA increases in PDMAEMA-b-PFOMA films, total water uptake increases. The salt partition coefficient of these films increases with increasing PDMAEMA content and weight fraction of water in the PDMAEMA domains. In contrast, salt diffusivity is not monotonically correlated with PDMAEMA content and effective hydration. Triblock copolymers exhibit different values of total water uptake, total hydration, salt partition, and diffusion coefficients than those of diblock copolymers (PDMAEMA-b-PFOMA) at the same PDMAEMA concentration. The total water uptake of PFOMA-b-PDMAEMA-b-PFOMA copolymers is lower than that of PDMAEMA-b-PFOMA, while water uptake of PTAN-b-PDMAEMA-b-PTAN films is higher than that of PDMAEMA-b-PFOMA. Salt partition and diffusion coefficients increase monotonically with the amount of freezing water in the hydrophilic domains, suggesting that the state of water in the phase-separated block copolymers is an important factor influencing their salt uptake and transport properties. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据