4.5 Article

A methodology and model for the pull-in parameters of electrostatic actuators

期刊

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
卷 10, 期 4, 页码 601-615

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/84.967384

关键词

actuators; electrostatic; MEMS; model; pull-in

向作者/读者索取更多资源

This paper presents a generalized model for the pull-in phenomenon in electrostatic actuators with a single input, either charge or voltage. The pull-in phenomenon of a general electrostatic actuator with a single input is represented by an algebraic equation referred to as the pull-in equation. This equation directly yields the pull-in parameters, namely, the pull-in voltage or pull-in charge and the pull-in displacement. The model presented here permits the analysis of a wide range of cases, including nonlinear mechanical effects as well as various nonlinear, nonideal, and parasitic electrical effects. In some of the cases, an analytic solution is derived, which provides physical insight into how the pull-in parameters depend upon the design and properties of the actuator. The pull-in equation can also yield rapid numerical solutions, allowing interactive and optimal design. The model is then utilized to analyze analytically the case of a Duffing spring, previously analyzed numerically by Hung and Senturia, and captures the variations of the pull-in parameters in the continuum between a perfectly linear spring and a cubic spring. Several other case studies are described and analyzed using the pull-in equation, including parallel-plate and tilted-plate (torsion) actuators taking into account the fringing field capacitance, feedback and parasitic capacitance, trapped charges, an external force, and large displacements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据