4.6 Article

A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 148, 期 12, 页码 A1324-A1335

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1415032

关键词

-

向作者/读者索取更多资源

A two-dimensional, two-phase, multicomponent, transient model was developed for the cathode of the proton exchange membrane fuel cell. Gas transport was addressed by multicomponent diffusion equations while Darcy's law was adapted to account for the capillary flow of liquid water in the porous gas diffusion layer. The model was validated with experimental results and qualitative information on the effects of various operating conditions and design parameters and the transient phenomena upon imposing a cathodic overpotential were obtained. The performance of the cathode was found to be dominated by the dynamics of liquid water, especially in the high current density range. Conditions that promote faster liquid water removal such as temperature, dryness of the inlet gas stream, reduced diffusion layer thickness, and higher porosity improved the performance of the cathode. There seems to be an optimum in the diffusion layer thickness at the low current density range. The model results showed that for a fixed electrode width, a greater number of channels and shorter shoulder widths are preferred. The transient profiles clearly showed that liquid water transport is the slowest mass-transfer phenomenon in the cathode and is primarily responsible for mass-transfer restrictions especially over the shoulder. (C) 2001 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据