3.8 Article

Intracellular pH regulation of neurons in chemosensitive and nonchemosensitive areas of brain slices

期刊

RESPIRATION PHYSIOLOGY
卷 129, 期 1-2, 页码 37-56

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0034-5687(01)00281-X

关键词

acid base; intracellular/extracellular; pH stimulus; chemosensitivity; central; pH response; control of breathing; central chemosensitivity; exchanger; Na(+)/H(+); Cl(-)/HCO(3)(-)

向作者/读者索取更多资源

The role of changes of intracellular pH (pH(i)) as the proximal signal in central chemosensitive neurons has been studied. pH(i) recovery from acidification is mediated by Na(+)/H(+) exchange in all medullary neurons and pH(i) recovery from alkalinization is mediated by Cl(-)/HCO(3)(-) exchange in most medullary neurons. These exchangers are more sensitive to inhibition by changes in extracellular pH (pH(o)) in neurons from chemosensitive regions compared to those from nonchemosensitive regions. Thus, neurons from chemosensitive regions exhibit a maintained intracellular acidification in response to hypercapnic acidosis but they show pH(i) recovery in response to isohydric hypercapnia. A similar pattern of pH(i) response is seen in other CO(2)/H(+)-responsive cells, including glomus cells, sour taste receptor cells, and chemosensitive neurons from snails, suggesting that a maintained fall of pH(i) is a common feature of the proximal signal in all CO(2)/H(+)-sensitive cells. To further evaluate the potential role of pH(i) changes as proximal signals for chemosensitive neurons, studies must be done to: determine why a lack of pH(i) recovery from hypercapnic acidosis is seen in some nonchemosensitive neurons; establish a correlation between hypercapnia-induced changes of pH(i) and membrane potential (V(m)); compare the hypercapnia-induced pH(i) changes seen in neuronal cell bodies with those in dendritic processes; understand why the V(m) response to hypercapnia of many chemosensitive neurons is washed out when using whole cell patch pipettes; and employ knock out mice to investigate the role of certain proteins in the CO(2)/H(+) response of chemosensitive neurons. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据