4.5 Article

Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses

期刊

JOURNAL OF BIOMECHANICS
卷 34, 期 12, 页码 1581-1587

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0021-9290(01)00145-2

关键词

adaptation; breakdown; prosthetics dermis

资金

  1. NIBIB NIH HHS [R01 EB004329] Funding Source: Medline
  2. NICHD NIH HHS [HD-31445, R01 HD031445-07] Funding Source: Medline

向作者/读者索取更多资源

Understanding microstructural changes that occur in skin subjected to repetitive mechanical stress is crucial towards the development of therapies to enhance skin adaptation and load tolerance in patients at risk of skin breakdown (e.g. prosthesis users, wheelchair users). To determine if collagen fibril diameter, collagen fibril density, dermal thickness, epidermal thickness, basement membrane length, and dermal cell density changed in response to repetitive stress application, skin subjected to moderate cyclic compressive and shear stresses for 1 h/d, 5 d/week, for 4 week was compared with skin from an unstressed contralateral control. The lateral aspects of the hind limbs of 12 Landrace/Yorkshire pigs were used. Skin from under the stressed site and a contralateral control site was processed for electron microscopy and light microscopy analysis. Electron microscopy results demonstrated significant (p <0.01) increases in collagen fibril diameter of 15.9%, 22.4%, and 22.9% for the upper, mid, and lower layers of the dermis, respectively, for the stressed skin compared with the control skin. Collagen fibril density (fibrils/unit cross-sectional area) decreased significantly for stressed vs. control by 19.8%, 29.2%, and 31.8% for the upper, mid, and lower layers, respectively. Light microscopy results demonstrated trends of a decrease in dermal thickness and an increase in cell density for stressed vs. control samples, but the differences were not significant. Differences in epidermal thickness and basement membrane length were not significant. These results demonstrate that quantifiable changes occur in collagen fibril architecture but not in the gross tissue morphology following in vivo cyclic loading of pig skin. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据