4.6 Article

Impact-ionization and noise characteristics of thin III-V avalanche photodiodes

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 48, 期 12, 页码 2722-2731

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/16.974696

关键词

AlGaAs; dead space; excess noise factor; GaAs; gain; impact-ionization; InAlAs; InP; ionization coefficients; ionization threshold energy; thin avalanche photodiodes

向作者/读者索取更多资源

It is, by now, well known that McIntyre's localized carrier-multiplication theory cannot explain the suppression of excess noise factor observed in avalanche photodiodes (APDs) that make use of thin multiplication regions. We demonstrate that a carrier multiplication model that incorporates the effects of dead space, as developed earlier by Hayat et al. provides excellent agreement with the impact-ionization and noise characteristics of thin InP, In0.52Al0.48As, GaAs, and Al0.2Ga0.8As APDs, with multiplication regions of different widths. We outline a general technique that facilitates the calculation of ionization coefficients for carriers that have traveled a distance exceeding the dead space (enabled carriers), directly from experimental excess-noise-factor data. These coefficients depend on the electric field in exponential fashion and are independent of multiplication width, as expected on physical grounds. The procedure for obtaining the ionization coefficients is used in conjunction with the dead-space-multiplication theory (DSMT) to predict excess noise factor versus mean-gain curves that are in excellent accord with experimental data for thin M-V APDs, for all multiplication-region widths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据