4.5 Article

Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae)

期刊

JOURNAL OF PHYCOLOGY
卷 37, 期 6, 页码 1044-1051

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1529-8817.2001.00119.x

关键词

Dinophyceae; Gymnodinium catenatum; GTX; PAPS; PSP; STX; sulfotransferase; toxic dinoflagellate

向作者/读者索取更多资源

A sulfotransferase (ST) specific to N-21 of saxitoxin (STX) and gonyautoxin 2+3 (GTX2+3) designated as N-ST was purified to homogeneity from the cytosolic fraction of clonal-axenic vegetative cells of the toxic dinoflagellate Gymnodinium catenatum Graham GC21V, which causes paralytic shellfish poisoning. The enzyme transferred a sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to N-21 in the carbamoyl group of STX and GTX2+3 to produce GTX5 and C1+2, respectively. The molecular mass of the purified enzyme was determined by SDS-PAGE to be 59 kDa. Gel filtration chromatography showed a native molecular mass of 65 kDa, indicating that the N-ST is a monomeric enzyme. The N-ST was specific to only N-21 of STX and GTX2+3, and O-22 sulfation was not observed. Moreover, the N-ST was not active toward neo STX and GTX1+4, which differed from STX and GTX2+3, respectively, in only N-1 hydroxylation. When various compounds previously reported to be substrates for STs in other organisms and paralytic shellfish poisoning toxins other than STX and GTX2+3 were added to the reaction mixture, N-ST activity was not decreased. The enzyme required PAPS as the sole source of sulfate. The enzyme was optimally active at pH 6.0 and 25 degrees C, and its activity was enhanced by Mg2+ and Co2+. The K-m values of the N-ST for STX and GTX2+3 were 16.1 muM and 29.8 muM, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据