4.4 Article

Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation

期刊

JOURNAL OF SEA RESEARCH
卷 46, 期 3-4, 页码 281-294

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S1385-1101(01)00087-9

关键词

surf zone; nursery; epibenthos; demersal fish; Europe; North Sea; Southern Bight; Belgian coast

向作者/读者索取更多资源

Monthly samples were taken in the surf zone of sandy beaches along the Belgian coast from May 1996 until July 1997 at four selected stations. Temporal patterns of the macrocrustacean and fish species residing the surf zone were investigated, as well as the abiotic variables structuring the community. In total 34 species were recorded belonging to caridean shrimps (3), anomuran and brachyuran crabs (5), cephalopods (2) and fish (,24). The brown shrimp Crangon crangon dominated almost all samples (>80%). Total densities often exceeded 400 ind per 100 m(2), and if C. crangon was excluded 10 ind per 100 m(2). Notwithstanding the harsh hydrodynamic conditions, the surf zone of Belgian sandy beaches is used intensively by a number of epibenthic macro-crustaceans and demersal fish species. Seven resident and ten migrant species were identified. As mainly juvenile fishes were present, the surf zone of the Belgian sandy beaches may act as a nursery for longer (e.g. plaice Pleuronectes platessa) or shorter (e.g. brill Scophthalmus rhombus) periods. However, its nursery function should be studied in more detail, since the highly dynamic circumstances and more specifically wave height and wind speed may be important structuring factors for the epibenthic communities. The surf zone of Belgian sandy beaches also seems to function as a transient area to other nurseries (e.g. bass Dicentrarchus labrax) or between a nursery and the true marine environment (e.g. dab Limanda limanda). Temporal variation in community structure was greatly masked by spatial differences between sites. Although variables such as salinity and hydrodynamic factors may have influenced the data, clear temperature-related, seasonal patterns occur. Most likely, extreme winter conditions and subsequent migration of organisms to deeper waters caused a decline in winter in both density and diversity. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据