4.6 Article

Phosphatidylcholine molecular species in lung surfactant - Composition in relation to respiratory rate and lung development

出版社

AMER THORACIC SOC
DOI: 10.1165/ajrcmb.25.6.4616

关键词

-

向作者/读者索取更多资源

Surfactant reduces surface tension at the air-liquid interface of lung alveoli. While dipalmitoylphosphatidylcholine (PC16:0/ 16:0) is its main component, proteins and other phospholipids contribute to the dynamic properties and homeostasis of alveolar surfactant. Among these components are significant amounts of palmitoyl myristoylphosphatidylcholine (PC16:0/ 14:0) and palmitoylpalmitoleoylphosphaticlylcholine (PC16:0/ 16:1), whereas in surfactant from the rigid tubular bird lung, PC16:0/14:0 is absent and PC16:0/16:1 strongly diminished. We therefore hypothesized that the concentrations of PC16:0/14:0 and PC16:0/16:1 in surfactants correlate with differences in the respiratory physiology of mammalian species. In surfactants from newborn and adult mice, rats, and pigs, molar fractions of PC16:0/14:0 and PC16:0/16:1 correlated with respiratory rate. Labeling experiments with [methyl-H-3]choline in mice and perfused rat lungs demonstrated identical alveolar proportions of total and newly synthesized PC16:0/14:0, PC16:0/16:1, and PC16:0/16:0, which were much higher than those of other phosphatidylcholine species. In surfactant from human term and preterm neonates fractional concentrations not only of PC16:0/16:0 but also of PC16:0/14:0 and PC16:0/ 16:1 increased with maturation. Our data emphasize that PC16:0/14:0 and PC16:0/16:1 may be important surfactant components in alveolar lungs, and that their concentrations are adapted to respiratory physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据