4.7 Article

Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 5, 期 4, 页码 615-627

出版社

EUROPEAN GEOPHYSICAL SOC
DOI: 10.5194/hess-5-615-2001

关键词

radar hydrology; raindrop size distribution; radar reflectivity-rain rate relationship

向作者/读者索取更多资源

The conversion of the radar reflectivity factor Z (mm(6)m(-3)) to rain rate R (mm h(-1)) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z-R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z-R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z-R relationships are derived. based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z-R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据