4.6 Article

Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA- transferase

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.2001.281.6.H2289

关键词

nitric oxide; 3-nitrotyrosine; energy substrate metabolism; mitochondria

资金

  1. NHLBI NIH HHS [HL-64221] Funding Source: Medline

向作者/读者索取更多资源

High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic complications, it is essential to identify specific proteins vulnerable to nitration with in vivo models of diabetes. In the present study, we have demonstrated that succinyl-CoA:3-oxoacid CoA-transferase (SCOT; EC 2.8.3.5) is susceptible to tyrosine nitration in hearts from streptozotocin-treated rats. After 4 and 8 wk of streptozotocin administration and diabetes progression, SCOT from rat hearts had a 24% and 39% decrease in catalytic activity, respectively. The decrease in SCOT catalytic activity is accompanied by an accumulation of nitrotyrosine in SCOT protein. SCOT is a mitochondrial matrix protein responsible for ketone body utilization. Ketone bodies provide an alternative source of energy during periods of glucose deficiency. Because diabetes results in profound derangements in myocardial substrate utilization, we suggest that SCOT tyrosine nitration is a contributing factor to this impairment in the diabetic heart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据