4.3 Review

Protein kinase C and the development of diabetic vascular complications

期刊

DIABETIC MEDICINE
卷 18, 期 12, 页码 945-959

出版社

WILEY
DOI: 10.1046/j.0742-3071.2001.00638.x

关键词

protein kinase C (PKC); diabetes mellitus; PKC isoforms; PKC beta; LY333531; vitamin E

资金

  1. NEI NIH HHS [EY9178, EY5110] Funding Source: Medline

向作者/读者索取更多资源

Hyperglycemic control in diabetes is key to preventing the development and progression of vascular complications such as retinopathy, nephropathy and neuropathy. Increased activation of the diacylglycerol (DAG)-protein kinase C (PKC) signal transduction pathway has been identified in vascular tissues from diabetic animals, and in vascular cells exposed to elevated glucose. Vascular abnormalities associated with glucose-induced PKC activation leading to increased synthesis of DAG include altered vascular blood flow, extracellular matrix deposition, basement membrane thickening, increased permeability and neovascularization. Preferential activation of the PKC beta isoform by elevated glucose is reported to occur in a variety of vascular tissues. This has lead to the development of LY333531, a PKC beta isoform specific inhibitor, which has shown potential in animal models to be an orally effective and nontoxic therapy able to produce significant improvements in diabetic retinopathy, nephropathy, neuropathy and cardiac dysfunction. Additionally, the antioxidant vitamin E has been identified as an inhibitor of the DAG-PKC pathway, and shows promise in reducing vascular complications in animal models of diabetes. Given the overwhelming evidence indicating a role for PKC activation in contributing to the development of diabetic vascular complications, pharmacological therapies that can modulate this pathway, particularly with PKC isoform. selectivity, show great promise for treatment of vascular complications, even in the presence of hyperglycemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据