4.6 Article

Electrochemical and infrared studies of the reduction of organic carbonates

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 148, 期 12, 页码 A1341-A1345

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1415547

关键词

-

向作者/读者索取更多资源

The reduction potentials of five organic carbonates commonly employed in lithium battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and vinylene carbonate (VC) were determined by cyclic voltammetry using inert (Au or glassy carbon) electrodes in tetrahydrofuran/LiClO4 supporting electrolyte. The reduction potentials for all five organic carbonates were above 1 V (vs. Li/Li+). PC reduction was observed to have a significant kinetic hindrance. The measured reduction potentials for EC, DEC, and PC were consistent with thermodynamic values calculated using density functional theory (DFT) assuming one-electron reduction to the radical anion. The experimental values for VC and DMC were, however, much more positive than the calculated values, which we attribute to different reaction pathways. The role of VC as an additive in a PC-based electrolyte was investigated using conventional constant-current cycling combined with ex situ infrared spectroscopy and in situ atomic force microscopy (AFM). We confirmed stable cycling of a commercial li-ion battery carbon anode in a PC-based electrolyte with 5 mol % VC added. The preferential reduction of VC and the solid electrolyte interphase layer formation therefrom appears to inhibit PC cointercalation and subsequent graphite exfoliation. (C) 2001 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据