4.6 Article

Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale

期刊

APPLIED PHYSICS LETTERS
卷 79, 期 23, 页码 3881-3883

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1421086

关键词

-

向作者/读者索取更多资源

Electrical transport measurements are reported for double-stranded DNA molecules located between nanofabricated electrodes. We observe the absence of any electrical conduction through these DNA-based devices, both at the single-molecule level as well as for small bundles of DNA. We obtain a lower bound of 10 T Omega for the resistance of a DNA molecule at length scales larger than 40 nm. It is concluded that DNA is insulating. This conclusion is based on an extensive set of experiments in which we varied key parameters such as the base-pair sequence [mixed sequence and homogeneous poly(dG).poly(dC)], length between contacts (40-500 nm), substrate (SiO2 or mica), electrode material (gold or platinum), and electrostatic doping fields. Discrepancies with other reports in the literature are discussed. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据