4.6 Article

Deletion of the RNA polymerase subunit RPB4 acts as a global, not stress-specific, shut-off switch for RNA polymerase II transcription at high temperatures

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 49, 页码 46408-46413

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107012200

关键词

-

资金

  1. NIGMS NIH HHS [GM 55736] Funding Source: Medline

向作者/读者索取更多资源

We used whole genome expression analysis to investigate the changes in the mRNA profile in cells lacking the Saccharomyces cerevisiae RNA polymerase II subunit RPB4 (Delta RPB4). Our results indicated that an essentially complete shutdown of transcription occurs upon temperature shift of this conditionally lethal mutant; 98% of mRNA transcript levels decrease at least 2-fold, 96% at least 4-fold. This data was supported by in vivo experiments that revealed a rapid and greater than 5-fold decline in steady state poly(A) RNA levels after the temperature shift. Expression of several individual genes, measured by Northern analysis, was also consistent with the whole genome expression profile. Finally we demonstrated that the loss of RNA polymerase II activity causes secondary effects on RNA polymerase I, but not RNA polymerase III, transcription. The transcription phenotype of the Delta RPB4 mutant closely mirrors that of the temperature-sensitive rpb1-1 mutant frequently implemented as a tool to inactivate the RNA polymerase II in vivo. Therefore, the Delta RPB4 mutant can be used to easily design strains that enable the study of distinct post-transcriptional cellular processes in the absence of RNA polymerase II transcription.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据