4.6 Article

Oxidized low density lipoprotein exposure alters the transcriptional response of macrophages to inflammatory stimulus

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 49, 页码 45729-45739

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106114200

关键词

-

向作者/读者索取更多资源

av6Macrophage-derived foam cells in atherosclerotic lesions are generally thought to play a major role in the pathology of the disease. Because macrophages play a central role in the inflammatory response, and the atherosclerotic lesion has features associated with chronic inflammatory settings, we investigated foam cell inflammatory potential. THP-IL-derived macrophages were treated with oxidized low density lipoprotein (OxLDL) for 3 days to lipid load the macrophages and establish a foam cell-like phenotype. The cells were then activated by treatment with lipopolysaccharide (LPS), and RNA was harvested at 0, 1, and 6 h after LPS addition. RNA from treated and control cells was hybridized to microarrays containing similar to 16,000 human cDNAs. Genes that exhibited a 4-fold or greater increase or decrease at either 1 or 6 h after LPS treatment were counted as LPS-responsive genes. Employing these criteria, 127 LPS-responsive genes were identified. Prior treatment of THP-1 macrophages with OxLDL affected the expression of 57 of these 127 genes. Among these 57 genes was a group of chemokine, cytokine, and signal transduction genes with pronounced expression changes. OxLDL pretreatment resulted in a significant perturbation of LPS-induced NF kappaB activation. Furthermore, some of the OxLDL effects appear to be mediated by the nuclear receptors retinoid X receptor and peroxisomal proliferator-activated receptor gamma because pretreatment of THP-1 macrophages with ligands for these receptors, followed by LPS treatment, recapitulates the OxLDL plus LPS results for several of the most significantly modulated genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据